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Activity series for hard-particle lattice gases and hard particles in continuous 
space are examined with respect to the singularity on the negative activity axis. 
For approximately spherical particles it is found that the nature of the singular- 
ity depends only on the dimensionality of space. 
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1. INTRODUCTION 

For hard-particle systems such as a gas of hard spheres, the coefficients b n 
in the Mayer activity series for the pressure 

/~p = ~ ; b . z  ~ (1.1) 
n 

(where p is the pressure, fl = 1 / k T ,  and z is the activity) are known (0 to 
alternate in sign and hence point to a singularity on the negative z axis that 
determines the radius of convergence of the series. Rigorous upper and 
lower bounds for the radius of convergence of activity series for hard- 
particle systems are known. (2) From the study of activity series for lattice 
gases with repulsive interactions only, (3'4) the position of the singularity on 
the negative z axis, which we will refer to as zo (-) ,  has been determined for 
a number of systems; in general zo (-)  is very close to the origin and this 
singularity completely dominates the behavior of the activity series. Be- 
cause of the presence of this dominant nonphysical singularity (not asso- 
ciated with a phase transition) it is very difficult to use activity series for 
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hard-particle systems to locate singularities on the real positive z axis that 
are associated with phase transitions. 

A good example is the lattice gas on the quadratic lattice with 
nearest-neighbor exclusion. Gaunt and Fisher (3) found a singularity in Eq. 
(1.1) for this system at 

zo (-) = -0.119 (1.2) 

From the study of other thermodynamic functions (particularly, high- 
density series) an additional singularity has been located (3'5~ on the positive 
z axis at 

zo (+~ = 3.76 (1.3) 

The singularity at zo ( + ~ is of interest since it is associated with the sublattice 
order-disorder transition found in this system. On forming the ratio of the 
numbers in (1.2) and (1.3), 

Izo +)l/Iz. ->l = 32 

one sees that the singularity on the negative axis is 32 times closer to the 
origin than the phase-transition singularity on the positive axis. 

Because of the dominance of zo (-~ in hard-particle systems, we have 
surveyed the nature of this singularity for a variety of lattice-gas models 
and hard-particle systems in continuous space (hard disks and hard 
spheres). If z is expressed in natural units (measuring the volume relative to 
the volume per particle at close packing), then we find striking similarities 
in the values of zo ( -~ and the exponent associated with this singularity. In 
particular, we find that the exponent depends on the dimensions of space 
only (for approximately spherical particles). This is in contrast to the nature 
of the phase-transition singularity, the transition being second order for 
some lattice gases, (3-6) first order for others, (6) and first order for disks and 
spheres. (7) 

We begin our survey by examining hard-particle systems in two 
dimensions that exhibit hexagonal packing in the high-density limit. 

2. TWO-DIMENSIONAL SYSTEMS WITH HEXAGONAL PACKING 

Figure 1A illustrates several different lattice gases on the triangular 
lattice that give a hexagonal array of particles in the close-packing limit. In 
each the central solid circle marks the location of the particle; the sur- 
rounding solid circles mark sites that are excluded from occupany by other 
particles. Following Nisbet and Farquhar, (6) we use the labels TR1 and 
TR12 to refer to the models, respectively, where the first hexagon of sites 
surrounding a particle (nearest-neighbor exclusion), and the first and sec- 
ond hexagons of sites surrounding a particle cannot be occupied by another 
particle. The b n for TR1 are known as a by-product of the series for the 
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Quadratic Q 2 1 
Fig. 1. (A) Lattice gases based on the triangular lattice. (B) Lattice gases based on the 
quadratic lattice. In each the solid circles indicate the lattice sites that are excluded from 
occupancy when a particle occupies the central site. 

two-dimensional  (2-d) Ising model  on the t r iangular  lattice (8) and  have  
been studied by  Gaunt .  (4) Orban  and  Bellemans (9) give the activity series 
for TR12  through b 7 (TR1 and TR12  are models  A and C of these authors).  
We  have  calculated b 8 and  b 9 for TR12 using the Toepli tz  matr ix  technique 
of Springgate and  Poland  (1~ the b, through b 9 for TR12  are given in Table  
I I I .  The  set of models  TR1,  TR12,  and  hard  disks can be viewed as a 
progression whereby the divisions of the t r iangular  lattice grid are m a d e  
finer, disks of course represent ing the cont inuous space limit (all three 
models  exhibit  hexagonal  close packing,  the reason they were chosen). 

For  ha rd  disks in two dimensions  the first four  B,  are known ex- 
actly (1~ and  in addi t ion the coefficients B 5 through B 7 have  been calcu- 
lated using Mon te  Car lo  techniques. (~2) These results are shown below 
(where o is the d iameter  of the disk): 

B 1 =  1 

B2 = ( ~ r / 2 ) a  2 

B 3 = B22(4/3 - fJ- /Tr)  = B22(0.7820044) 

B 4 = B23(2 - 9 ~ / 2 , n "  + 1 0 / v  2) = B23(0.5322318) (2.1) 

B 5 = B24(0.3335561) 

B 6 = B25(0.19893) 

B 7 = B26(0.1148) 
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To convert the coefficients in the density expansion for the pressure, 
the B,, to coefficients in the activity expansion, the bn, one can use the 
standard relation 

z=pexp[~,(n+l)Bn+lp h I =  ~ (2.2) 

which can be expanded to give a series for z as a function of p, the density. 
Inversion of the series yields 

P = E nbn zn (2.3) 
n 

giving the b~. 
To compare the series for various models it is convenient to scale O 

and z so as to make 0 = 1 at close packing. Letting v 0 be the volume (or 
area in two dimensions) per particle at close packing then the relative 
density and activity are 

5 = zip o (2.4) 

= P/Po 
where 

Oo = 1/Vo (2.5) 

For lattice gases Vo is the number of lattice sites per particle at close 
packing. For the models treated here (giving v o in parentheses) one has: 
TRI(3), TR12(7), and disks (~f3-/2); for disks we take the parameter, o, as 
unity. The values of v 0 for all the models we will discuss are listed in Ta- 
ble I. 

Scaling the b n as follows, 

b. = b./vo"-' (2.6) 

Table I. The Volume or 
Number of Lattice Sites, v 0, 

per Particle at Close Packing 

Model Vo 

TRI (2-d) 3 
TR 12 (2-d) 7 
Quadratic (2-d) 2 
Q21 (2-d) 8 
sc (3-d) 2 
fcc (3-d) 6 
Quartic (4-d) 2 
Disks (2-d) ~ / 2  
Spheres (3-d) 1/~- 
Hyperspheres (4-d) 1/2 
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(1.1) becomes 

tiff~5 = B p / z  = 1 + ~ /7,2"-' (2.7) 
n = 2  

The virial expansion for the pressure 

fie = g Bop" (2.8) 
n 

when expressed as a series in ~ becomes 
0t3 

f l f i /~ = f l p / p  = 1 + ~ Bnp n-I (2.9) 
n=2 

where 

Bn = Bn/Vo n-1 (2.10) 

We have written (2.7) and (2.9) in the form given to emphasize the fact that 

/~1 -- bl = 1 (2.11) 

B = B 1 = I  

The density as a function of the activity is obtained in the standard 
manner 

= OBp/Oln2 (2.12) 

o r  

= 2 n/Tn~ n (2.13) 
n 

The values of Bn and 6n for disks are given in Table II. 
The function we have chosen to study is the reduced compressibility 2 

= ~ n n 2 E . ~  ( 1 (2.14) X(~) 
-- zo(-)  

which one expects to diverge strongly at ~o (-).  Table IV shows the values of 
~o (-) and v for the models studied, obtained as denominator roots and their 
respective residues for the off-diagonal and diagonal Pad6 approximants to 
D log x. The number of terms used in each case is indicated in Table IV. 

As one goes from TR1 to TR12 to disks, one sees that ~o (-) moves 
slightly closer to the origin, but not by much. The important result is that 
the exponent v is essentially the same for all three models. Specifically we 
find 

v = 1.195 + 0.005 (2.15) 

2 X is re la ted  to the i so thermal  compress ib i l i ty  K T by  the re la t ion K v = fiX~p2; X is the 

in teres t ing (s ingular)  pa r t  of K T. 
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Table II. The Scaled Coefficients B,, and 6 n for Hard Particles 
in Continuous Space 

Disks (2-d) Spheres (3-d) Hyperspheres (4-d) 

1 1.000 1.000 1.000 
2 1.814 2.962 4.935 
3 2.573 5.483 12.33 
4 3.176 7.456 18.19 
5 3.610 8.486 
6 4.905 8.868 
7 4.088 9.250 

n Disk s (2-d) Spheres (3-d) Hyperspheres (4-d) 

1 1.000 1.000 
2 - 1.814 - 2.962 
3 5.293 14.80 
4 - 18.88 - 92.35 
5 75.33 651.8 
6 - 322.75 - 4978.3 
7 1452.9 40169.4 

a For simplicity we show only four to five figures. 

1.000 
- 4.935 
42.54 

- 464.4 

where  the +_ indica tes  the app rox ima te  range of values found.  Clear ly  it is 
poss ible  that  P2-d = 6 / 5  exactly.  

Thus  all three models  have  the same k ind  of s ingular i ty  at 5~ ( -~.  As 

men t ioned  in the In t roduc t ion  this is in cont ras t  to the behav io r  of the 
phase  t rans i t ion  s ingular i ty  at  5o(+): TR1 has a second-order  t ransi t ion,  
while TR12  a n d  ha rd  disks (6'7) have  a f i rs t -order  t ransi t ion.  

3. O T H E R  T W O - D I M E N S I O N A L  L A T T I C E  G A S E S  

W e  have  examined  two other  lat t ice gas models  in two d imens ions  to 
test the no t ion  that  the s ingular i ty  at  z, ( - )  is the same for all 2-d ha rd -  
par t ic le  systems. The  first of these models  is the case of neares t -ne ighbor  
exclusion on the quadra t i c  lat t ice [the mode l  discussed in the In t roduc t ion  
in con junc t ion  with Eq. (1.2) and  (1.3)]. The  b n are  known (8) for this system 
through  n = 15 and  thus give us a long, exact  series with which to test the 
universal i ty  idea.  (This system has  been  examined  previously  by  G a u n t  and  
F isher  (3) using the bn th rough  n = 13.) A g a i n  examin ing  D log x, one f inds 
the results given in Tab le  IV (listed under  quadra t i c  model) .  

The  other  mode l  we examine,  which we will call  Q21, excludes 21 sites 
on the quadra t i c  lattice,  as i l lus t ra ted in Fig. lB.  W e  have ca lcu la ted  the b, 
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Table III. The b n for Several Lattice Gases 
i 

n TR 12 (2-d) Q21 (2-d) Quartic (4-d) 

347 

1 1 
2 - 9�89 - 127 
3 1443 ~ 2525 
4 - 267543- - 6231 
5 55,426 �89 172,105 
6 - 1,232,512~ - 5,105,377~ 
7 28,792,636 �89 159,144,839 
8 - 697,475,6767 - 5,145,013,626 
9 17,372,452,613 ~ 

1 
-16�89 
472�89 

- 17,0865 

for this system through n = 8 (again using the Toepli tz  matr ix  technique of 
Po land  and  Springgate~5)); these coefficients are given in Table  I I I .  The  
results of calculating the roots and  residues of D log x are shown in 
Table  IV. 

Clearly the values of ~ for both  of these very different models  are 
squarely in the range given by (2.15) and  hence support  the idea that  the 
nature  of this singularity is the same for all 2-d hard-par t ic le  models  (for 
systems of approx imate ly  circular particles). 

4. THREE-DIMENSIONAL MODELS 

We have  examined  three models  in three dimensions,  ha rd  spheres and  
two lattice-gas models  (4'8) [particles with neares t -neighbor  exclusion on the 
simple cubic (sc) and  face-centered cubic (fcc) lattices]. The  BN for  spheres, 
shown below, are known exactly through B4(13) a n d  have  been calculated 
by  Mon te  Car lo  methods  for  B 5 through B7 .(14) The quant i ty  o is the 
d iameter  of the sphere: 

B 1 =  1 

B 2 = (27r /3)o 3 

B3 = B22(5/8) 

B 4 = B23(0.28695) (4.1) 

B 5 = B24(0.110252) 

B 6 = B25(0.0389) 

B 7 = B26(0.0137) 
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The scaled coefficients [using (2.6) and (2.10)] /g, and /~, are shown in 
Table II. 

Examining D log x for all three models yields the results shown in 
Table IV. The values of ~o (-)  are of the same order of magnitude for all 
three models. For  spheres and the sc lattice gas (where we have 11 terms) 
the values of p obtained are in the range 

= 1.01 __ 0.01 (4.2) 

with the values of r for the fcc lattice gas (where we have only six terms) 
being only slightly larger. Again, the values of ~ are almost exactly the same 
for all the three-dimensional (3-d) models treated (the value of p for the 3-d 
models being different from that for the 2-d models). 

We can speculate that P3-d = 1 exactly. 

5. FOUR-DIMENSIONAL MODELS 

We have found that P2-d TM 6 /5  and P3-d ~- 1. The question thus arises 
as to the values of p for systems in higher dimensions. The first three B, are 
known (~5) exactly for hyperspheres in four dimensions and B 4 for this 
system has been estimated by Monte Carlo methods. (]6) We give the results 
below. In four dimensions the quantity v 0 has the value 1/2. (17) 

B 1 = I  

B 2 

B 3 = 

7r204//4 = 2 . 4 6 7 4  

B22(4/3 - 3~- /2~r)  = 3.0826 

(5.1) 

B4= B23[(- 3 -Jr 2'~ 2) + ( 6 -  9~ /3- /~-  173/1809r 2) -0 .09491 

= 2.2740 

In addition we have calculated the first four b, for the lattice gas with 
nearest-neighbor exclusion on the quartic lattice (analog of the simple cubic 
lattice in four dimensions). These coefficients are given in Table III. 

Four coefficients is a very small number of terms. To see if even a 
rough estimate of ~ might be expected from such a small set of data we 
calculated P3-d for spheres using the first four/7,. The values of ~o(-) and 1, 
resulting from this calculation are shown in Table IV. On comparing the 
value of p calculated for spheres using four terms with that calculated using 
seven terms one sees that the estimate obtained using four terms is 
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Table IV. The Values of zo ( -~ and v Computed from 
D log X for the Models Discussed in the Text 

i 

Model n ~ - ~,~(-) v 

TR1 (2-d) 11 0.2706 1.188 
0.2707 1.191 
0.2706 1.189 

TR12 (2-d) 9 0.2278 1.204 
0.2278 1.204 

Disks (2-d) 7 0.1688 1.203 
0.1686 1.292 
0.1688 1.203 

Quadratic (2-d) 15 0.2388 1.193 
0.2388 1.195 
0.2388 1.195 

Q21 (2-d) 8 0.1948 1.193 
0.1948 1.192 

fcc (3-d) 6 0.2573 1.043 
0.2573 1.042 

sc (3-d) 11 0.1492 1.000 
0.1492 0.998 
0.1491 0.990 

Spheres (3-d) 7 0.09138 1.015 
0.09129 1.005 
0.09138 1.015 

Spheres (3-d) 4 0.09286 1.089 
0.09272 1.084 

Quartic (4-d) 4 0.03138 1.025 
0.03118 1.008 

Hyperspheres (4-d) 4 0.05181 1.014 
0.05143 0.995 

m u 

aThe quantity n is the number of 6 n coefficients used. 

adequate to obtain a rough idea of the magnitude of v. The values of ~ ( -7  
and v for our two four-dimensional (4-d) models are also shown in Table 
IV. The value of v4_ a seems to be about the same as that for 3-d systems, 
v i L  

P4-d ~ /33-d ~ l (5.2) 
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6, ONE-DIMENSIONAL MODELS 

In one dimension the lattice gas with nearest-neighbor exclusion is 
exactly soluble. (~8) The pressure per lattice site as a function of activity is 
given by the relation 

tip = ln�89 + ( 1  + 4z)'/21 (6.1) 

From (6.1) we can easily find the form of the singularity at zo (-)  (switching 
from z to ~ with v 0 = 1): 

1/2 ( ) 
Oln5 1 - 5/~0(-1) 

(6.2) 
,~a(-) = _ ! 2 

Using (6.2) we finally have 

and hence 

( 1 )3J2 
(6.3) 

ul_ d = 3 / 2  (6.4) 

The equation of state for hard rods in continuous space (the analog of 
disks or spheres for one dimension) is also known exactly. (~9) For particles 
of unit length 

tip = p/ (1  - p) (6.5) 

The B. = 1 for all n and hence (2.2) gives 

Z = (  P ) (6.6) 

Letting 

y = - 1 /p  (6.7) 

(6.6) becomes 

y2 
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Keeping only the lowest order term iny  (y ~ 0 as p ~ - m) and solving for 
P, one obtains (6.2), and hence also (6.3), with ~n(-) = - ( I / e ) .  

Thus vi_ a = 3 / 2  is a universal result for all hard-particle systems in one 
dimension. 

7. LATTICE GAS OF INDEPENDENT PARTICLES 

The simplest lattice gas is where there is no interaction at all between 
particles on neighboring lattice sites, the only restriction on occupancy 
being that no two particles can occupy the same site. This is the lattice gas 
of independent particles. Since there is no interaction between particles it 
does not matter how the sites are arranged in space or on the dimensional- 
ity of space. In this simple model one can easily see why the bn's must 
alternate in sign. If M is the number of lattice sites, then the number of 
ways of placing n identical particles on M sites (the discrete analog of the 
configuration integral) for the first few n's are 

QI = M 

Q2 1 M ( M -  1) = 1 = - ~ M +  . . .  
(7.1) 

Q3= M(M- 1 ) ( M - 2 ) = s M +  - . .  

=IM(M- 1 ) ( M - 2 ) ( M - 3 ) = -  1 Q4 ~ M +  - . .  

The b n are simply the coefficients of the term linear (1~ in M. The general- 
ization is 

tip = ~ ( - 1)" +' 1 z n = In(1 + z) (7.2) 
n = l  n 

giving 

Z 

P -  l + z  
z (7.3) 

X - -  - -  (1 + z) 2 

Thus for the lattice gas of independent particles 50(-) = - 1 and v = 2. 

8. S U M M A R Y  

Analysis of activity series indicates that the nature of the singularity on 
the negative activity axis in hard-particle systems containing approximately 
spherical particles depends only on the dimensionality of space. The 
exponents characterizing the divergence of the reduced compressibility at 
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zo ( - )  have been estimated to be 

~independent particles = 2 (exact) 

~l-d ---- 3 / 2  (exact) 

u2_ d = 1.195 +_ 0.005 

u3. a = 1.01 + 0.01 

If we speculate that ~2-d = 6 / 5  and u3_ a - 1  exactly, 
following forms for the variation of the density near zo(- )" 

independent  

particles 

1-d 

2-d 

3-d 

where 

p ~  - -  m - |  

p ~  - A - 1 / 2  

"r~ -- A-  1/5 

p ~ l n A  

(8.~) 

then we have the 

(8.2) 

A = 1 - -  z / z o ( - ~  (8.3) 
The behavior  of p(z) near zo ( - )  for all the above expressions is qualitatively 
the same and is shown schematically in Fig. 2. Aside f rom determining the 
radius of convergence of activity series, the asymptote  at zo ( - )  is important  
in determining the functional form of p(z) as z enters the physical range (z 

z-z  

P 

/ Z 

Fig. 2. Schematic illustration of the variation of p(z) in the neighborhood of z~ (-), the 
singularity on the negative z axis. The physical range of z is the positive axis. 
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pos i t ive  a n d  real) .  F o r  i n d e p e n d e n t  par t ic les ,  the  s ingu la r i ty  at  z~ (-) 

d e t e r m i n e s  the  f u n c t i o n a l  f o r m  of  O(z) o v e r  the  w h o l e  phys i ca l  r a n g e  of  z, 

viz. o = z / ( 1  + z). 
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